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Abstract—Image retrieval plays an increasingly important role in our daily lives. There are many factors which affect the quality of

image search results, including chosen search algorithms, ranking functions, and indexing features. Applying different settings for

these factors generates search result lists with varying levels of quality. However, no setting can always perform optimally for all

queries. Therefore, given a set of search result lists generated by different settings, it is crucial to automatically determine which result

list is the best in order to present it to users. This paper aims to solve this problem and makes four main innovations. First, a preference

learning model is proposed to quantitatively study and formulate the best image search result list identification problem. Second, a set

of valuable preference learning related features is proposed by exploring the visual characters of returned images. Third, a query-

dependent preference learning model is further designed for building a more precise and query-specific model. Fourth, the proposed

approach has been tested on a variety of applications including reranking ability assessment, optimal search engine selection, and

synonymous query suggestion. Extensive experimental results on three image search datasets demonstrate the effectiveness and

promising potential of the proposed method.

Index Terms—Image retrieval, search results performance comparison, reranking ability assessment
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1 INTRODUCTION

IMAGE retrieval plays an increasingly important role in our
daily lives. Extensive research have been conducted on

retrieving images relevant to a given query. Many factors
can influence image search results. Existing work aims to
get better search results by focusing their efforts on various
aspects of the search process, such as designing effective
visual features for image representation [1], [2], building
efficient image indexes [3], image annotation [4], [5], [6], [7],
and developing new ranking and reranking algorithms [8],
[9], [10], [11], [12]. The algorithms used in these aspects of
the search process generate result lists of varying quality
when used with different settings. Following are two exam-
ples for illustration.

In our first example, the image search results generated by
two popular search engines, Bing andGoogle, are compared.
Twenty nine text queries are submitted to these two search
engines, and the images they returned are collected. Fig. 1

gives their AP@40 (average precision (AP), ref Section 5 for
details) difference for each query of the two search engines.
It is found that although Bing and Google have comparable
MAP values (0.5224 and 0.5236 respectively), their perfor-
mance on individual queries is quite different. Google
achieves better performance on about half the queries. If an
algorithm could automatically determine which search
engine would generate a better result list for each query, one
could achieve better performance by selecting the optimal
search engine for each query. Table 1 shows the MAP value
after this selection, which is 0.6071, about 16 percent relative
improvement over Bing andGoogle.

In the second example, the performance of text-based
image search and visual reranking are compared. Most
existing image search engines are implemented by indexing
and searching textual information associated with images,
e.g., surrounding text, URLs. The text-based image search
approach is efficient for large scale image databases. How-
ever, it suffers when the associated text is incapable of ade-
quately describing the image. To address this difficulty,
visual reranking has been developed to refine the text
search results by incorporating visual information from
images. Although it has been found that visual reranking
can generally improve the performance of text-based image
search to some extent [9], [10], it is not guaranteed to benefit
every query. Recent research has observed that visual
reranking can greatly improve retrieval performance for
some queries, while for others reranking can even degrade
the performance of the initial text-based search.

As an illustration, two popular reranking methods, BR
[10] and PRF [12], are applied on a public image search
dataset (Web353). This dataset was collected by Krapac
et al. [13], which contains 71,478 images returned by a Web
search engine for 353 general textual queries. Table 2
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presents the average performance of the text-based search
engine (Text) and the performance of the two rerankingmeth-
ods, in terms of MAP@20 over 353 queries. Table 3 lists the
number of queries with improved, degraded, or equivalent
performance after reranking. It is found that, although overall
performance of all 353 queries is improved, there are still
around 100 queries (25-30 percent) that suffer performance
decrease after reranking. In the further investigation of the
reranking performance on each query,we find that the perfor-
mance of many queries has decreased significantly. For some
queries, the decrease inAP value is as great as 0.7. Thus, given
a query, it becomes crucial for the search engine to predict its
visual reranking performance and decide whether the visual
reranking process should be performed or not. Doing so
would allow us to avoid presenting reranking results which
are evenworse than text-based search results to users.

The above two examples raise the same problem: for a
query, given a set of result lists, which one is the best (has
the highest retrieval performance)? In other words, which
result list should be presented to users? This paper aims to
solve this problem: given a set of search result lists returned by
multiple search executions of a query, how can we design an algo-
rithm to automatically compare the quality of those result lists in
order to identify the result list with the highest performance? To
solve this problem, we build a model to investigate the qual-
ity of search results using machine learning. It consists of
two stages: offline training and online testing. In the train-
ing stage, the visual distribution characteristics of good and
bad search result lists are explored and a set of light-weight
features is derived to capture their differences. Then, by
forming the search result lists of training queries into prefer-
ence pairs, we derive a preference learning model (PLM) by
training with RankSVM [14]. Finally, in the testing stage,
the developed PLM is applied to predict the preference
score for search result lists of any testing query.

The proposed approach has a wide range of applications.
For example, it is capable of selecting the best search engine
to solve the problem in Example 1 and automatically deter-
mining whether reranking can benefit the query to solve the
problem in Example 2. In query expansion/suggestion, the
proposed method can automatically identify the best one

from multiple candidates of suggested search terms. In gen-
eral, given different search algorithm settings, our approach
can automatically select the optimum settings for each query.

The main contributions introduced in this paper are sum-
marized as follows:

� The image search result preference learning problem
is quantitatively studied and formulated.

� A novel framework and a set of valuable features to
automatically compare the quality of image search
result lists are proposed.

� A general preference learning model and a query-
dependent preference learning model are proposed.

� The proposed approach has been tested on a variety
of applications including optimal search engine
selection, merging of search result lists, selecting the
best visual feature and reranking approach for each
individual query, and synonymous query sugges-
tion. The superior performance has demonstrated its
promising application potential.

� Our work will explicitly guide the research in visual
reranking ability estimation and provide a path for
query difficulty modeling.

The preliminary version of this work was presented at
ACM Multimedia [15]. In this journal version, we have
enhancement in four aspects. 1) We give a comprehensive
review of the most related works, query difficulty estima-
tion, in Section 2, and compare our method with them in the
experiments. 2) A query-dependent preference learning
model is further designed for building a more precise and
query-specific model. Corresponding experiments are
added to verify the superiority of this query-dependent
preference learning model. 3) We collect a new dataset
which consists of 38,800 images. We collected 97 synony-
mous query groups from WordNet and collected the top
200 returned images for each query. 4) We study the effec-
tiveness of our preference learning method for synonymous
query suggestion scenario by conducting experiments on
our newly collected dataset.

2 RELATED WORK

Considerable research has been proposed to improve image
search from various aspects, such as image annotation [4],

Fig. 1. Image search result comparison between Bing and Google:
AP@40 difference APBing �APGoogle on each query.

TABLE 1
MAP@40 (�100) of Bing, Google, and After

Optimal Search Engine Selection for Each Query

MAP@40

Bing 52.24
Google 52.36
SelectOpt 60.71

TABLE 2
MAP@20 (�100) of the Text-Based Search (Text)
and the Two Reranking Methods, PRF and BR

MAP@20 Gain

Text 50.28 -
PRF 60.65 20.62%
BR 63.64 26.57%

TABLE 3
The Number of Queries with Improved, Degraded,

or Equivalent Performance After Reranking

#queries Improved Unchanged Degraded

PRF vs. Text 237 6 110
BR vs. Text 256 10 87
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image ranking [3], [8] and visual reranking [16], [17], [18].
All of these research efforts have the same objective of
returning good image search results to users. Different
search result lists are generated by different image search
methods and their performance on each query varies
greatly. These works show their strength on certain aspects.
There is no single method which can always work the best
for all queries. Therefore, in addition to developing (overall)
effective search approaches, it is also very important to select
the most suitable search method for each query. Through
this selection, better image search results can be derived.
This paper conducts this best method selection for each
query by investigating the quality of the image search result
lists generated by different search methods. The list with the
highest performance is chosen and presented to users.

There is no previous work on automatic image search
result comparison and selection. The most related is the
query difficulty prediction. Query difficulty prediction aims
to predict whether a query will have a high retrieval perfor-
mance in a document collection. It has been explored for
many years [19], [20], [21], [22], [23], [24], [25] in document
retrieval and its importance has been recognized in the
information retrieval community. The work can be catego-
rized into two groups, pre-retrieval prediction and post-
retrieval prediction, according to whether the prediction is
conducted before or after retrieval.

Pre-retrieval query difficulty prediction attempts to
evaluate search performance before the retrieval step [20],
[21], [25], mainly relying on statistics of query terms over
document collections. For example, Kwok et al. [20]
extracted simple features such as log document frequency
and query term frequency to train a query difficulty pre-
diction model via support vector regression. Imran and
Sharan [25] proposed two pre-retrieval query difficulty
predictors based on the co-occurrence information among
query terms, with the assumption that higher co-occur-
rence of query terms means more information is con-
veyed which leads to an easier query.

In post-retrieval query difficulty prediction, the retrieval
step is conducted first and query difficulty prediction evalu-
ates the performance of the returned results. Various post-
retrieval query difficulty predictors are proposed [19], [22],
[23], [24], [26], [27], [28], [29], [30]. Those methods can be
further grouped into three categories: clarity-based, stabil-
ity-based, and coherence-based. Clarity-based methods
[19], [24], [28], [30], [31] assume the distribution difference
between the retrieved documents and the whole document
collection can indicate the query difficulty level. Cronen-
Townsend et al. [19] proposed the Clarity Score (CS) which
measures the ambiguity of a query through the Kullback-
Leibler (KL) divergence [32] between the language models
created from top-retrieved documents and the whole docu-
ment collection. Zhou and Croft [31] estimated the query
difficulty by measuring the information change from an
average returned document to the actual retrieval results.
Stability-based methods [23], [26], [29] predict query diffi-
culty by investigating the stability of several retrieval results
obtained from different ways. Yom-Tov et al. [23] measured
the agreement between the top returned results of the full
query and its sub-queries. Aslam and Pavlu [26] first used
different scoring functions to obtain numbers of retrieval

lists and then mapped each ranked list to a probability dis-
tribution. The query difficulty predictor is derived from the
Jensen-Shannon divergence [33] among these distributions.
Zhou and Croft [29] defined the ranking robustness as the
similarity between ranked lists generated from original col-
lection and corrupted collection. Coherence-based methods
indicate the search quality by using the tightness of the top
returned documents. A coherence score indicator is pro-
posed by He et al. [34]. It measures the portion of coherent
document pairs in the top returned document set. To select
the best query expansion for spoken content retrieval,
Rudianc et al. [27] exploited the coherence of the top ranked
documents returned by the unexpanded query and several
query expansion alternatives. There are also some learning
based methods. Jensen et al. [22] predicted query difficulty
by using features extracted from surrogate documents rep-
resented in the search result list to train a regression model.

In image retrieval, little research has been conducted on
query difficulty estimation. Xing et al. [35] used textual fea-
tures to predict whether a query is difficult to represent as
images or not. This work does not investigate the image
search performance, but only classifies the queries into
two categories “easy” or “hard”. Li et al. [36] measured the
query difficulty in terms of the consistency degree between
query image and its top returned images. Here the query is
an image and the consistency degree can be calculated by
averaging their visual distance. Rudianc et al. [37] extended
their previous coherence indicator [27] by generating new
concept vectors for video representation.

Unlike query difficulty prediction, which estimates the
performance of a search result list for a given query, our
work targets at comparing several search result lists gener-
ated for a particular query. Instead of predicting their exact
performance, we only need to know which search result list
is better than the others. Furthermore, in query difficulty
prediction, the search result lists are independent of each
other since they are generated for different queries. In our
problem, the compared search result lists are generated for
the same query and are thus correlated. We can utilize the
correlation between them. Additionally, both the query and
documents in the query difficulty prediction problem are in
the textual domain. In our problem queries are textual and
images are visual, creating a more challenging problem.
Our image search result performance comparison problem
faces many challenges. As a first attempt, this paper only
focuses on exploiting visual information, which is the essen-
tial description of images. In the case where textual informa-
tion of images (URL, surrounding texts et al.) is also
available, we will further exploit the joint usage of textual
and visual information for this problem in the future.

3 IMAGE SEARCH RESULT PREFERENCE LEARNING

3.1 Preference Learning Model

For query q and an image collection fx1; . . . ; xNg, multiple
search result lists can be derived using different search algo-
rithms. Each search result list is a permutation/ranking of
the N images sorted in descending order by their ranking
scores, which are generated by the search algorithm. We
use ranking list variable l to denote a search result list.
Assuming there are nq ranking lists generated for query q,
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they constitute a set of search result lists LðqÞ ¼ fl1; . . . ; lnqg.
Our objective is to automatically determine which l in LðqÞ
has the highest performance,

l� ¼ argmax
l2LðqÞyðlÞ; (1)

where yðlÞ denotes the performance of l. yðlÞ can be mea-
sured by commonly used information retrieval measures,
such as precision, recall, Average Precision [38] and Nor-
malized Discounted Cumulated Gain (NDCG) [39].

For two ranking lists, the one with more relevant images
ranked at the top gives a better performance than the one
with fewer relevant images ranked at the top. If we have the
ground truth label of each image (its relevance to query q),
then yðlÞ can be derived by using AP or NDCG and the best
search result selection in problem (1) is straightforward.
However, in real applications, the ground truth relevance
labels for images are unavailable. In this situation, how can
we know which ranking list performs better? In this paper,
we propose to solve this problem via machine learning. Spe-

cifically, we want to learn a preference model fðlÞ ¼ wTcðlÞ
from a training set, wherew is the weighting coefficient vec-
tor and cðlÞ is a vector which reflects the characteristics of l.
This model should satisfy the following constraints on the
training set

8ðli; ljÞ; if yðliÞ > yðljÞ; then fðliÞ > fðljÞ: (2)

For two ranking lists li and lj in training set, if the ground
truth performance yðliÞ is better than yðljÞ (li is preferred to
lj), fðliÞ should be larger than fðljÞ. In other words, the ordi-
nal relationship of pair ðfðliÞ; fðljÞÞ must be consistent with
that of ðyðliÞ; yðljÞÞ , to reflect the ground truth preference of
two ranking lists.

In this paper we formulate the learning problem of fð�Þ
by using the powerful RankSVM [14] algorithm. It mini-
mizes the prediction errors on a set of training queries

Q ¼ fqð1Þ; . . . ; qðmÞg,

min
1

2
wTwþ C

X
�ijk

s:t: 8k; k ¼ 1; . . . ;m: 8ðli; ljÞ 2 SðqðkÞÞ;
wTcðliÞ � wTcðljÞ þ 1� �ijk; �ijk � 0;

(3)

where � is the slack variable and C > 0 controls the trade-

off between model complexity and training errors. SðqÞ is
the set of preference ranking list pairs for query q generated

from the ranking list set LðqÞ ¼ fl1; . . . ; lnqg

SðqÞ ¼ fðli; ljÞjyðliÞ > yðljÞ; i; j ¼ 1; . . . ; nqg: (4)

The preference learning model fð�Þ can be derived by
solving problem (3). Then, this model can be applied to any
testing query q0 for which ground truth relevance labels are
unavailable. Suppose there are nq0 ranking lists generated

for this query, Lðq0Þ ¼ fl1; . . . ; lnq0 g. fð�Þ can predict a value

for each list. For any two ranking lists li and lj, if
fðliÞ > fðljÞ , we know that li performs better than lj, and
vice versa. The ranking list with the highest prediction value
is the one which has the best performance.

3.2 Query-Dependent Preference Learning Model

It is obvious that the constitution of the training data will
greatly influence the performance of the trained Preference
Learning Model. A training set comprising of informative
samples will lead to a high-performing model [40]. The
study in active learning also shows a small fraction of dis-
criminative training data can often yield satisfying perfor-
mance [41]. This is especially important in our situation
since images returned for difference types of queries have
different visual distributions. As a consequence, it is inap-
propriate to handle all queries using a universal preference
learning model. Inspired by previous work [42], we propose
to exploit different preference learning models for different
queries, i.e., query-dependent PLM.

Specifically, we derive the query-dependent PLM by con-
structing a query-dependent training query set for each
query. The straightforward way is to classify queries into
several categories (landmark, people, object, etc.), and then
train a PLMmodel for each category with queries belonging
to this category as training set. In the testing stage, the test
query is mapped to the pre-defined query category and the
corresponding PLM is applied. This approach is efficient
(several PLMs need to be trained offline) but requires an
accurate query classification process which is difficult to
achieve. Therefore, a simple solution is selected. For query
q, we find its K closet queries from Qtrain as training set to
train query-dependent PLM for it.

The key problem is to find the K-nearest queries for q
accurately. One text document retrieval work [42] proposes
to first adopt BM25 to find the top T ranked documents for
query q and then take the means of the features (query-
dependent feature, e.g., tf, idf) of the T documents as a fea-
ture of the query. With each query represented as a feature
vector, the K-nearest queries of q are found by their distance
in Euclidean space. The challenge in our problem is that the
query and the images are in different domain: textual and
visual respectively. It is difficult to derive the query-depen-
dent feature to represent a query. To tackle this domain gap
problem, we propose to use the popular bag of visual word
(BOVW) image representation [43], which is designed ana-
logically to text retrieval. In BOVW, an image can be treated
as a document and represented by a set of visual words. We
represent each query by its language model P ðwjqÞ, and
define the distance between queries qðiÞ and qðjÞ as the KL
divergence [32] between their query language models,

DistðqðiÞ; qðjÞÞ ¼ DKLðP ðwjqðiÞÞjP ðwjqðjÞÞÞ

¼
X

w2V
P ðwjqðiÞÞlog P ðwjqðiÞÞ

P ðwjqðjÞÞ :
(5)

P ðwjqÞ is the language model of query q, defined as

P ðwjqÞ ¼
X

x2R
P ðwjxÞP ðxjqÞ; (6)

where w 2 V is a visual word, and R is a set of images
returned for query q. P ðwjxÞ is defined as the term
frequency of the word w in image x. For P ðxjqÞ, since
P ðxjqÞ / P ðqjxÞP ðxÞ and each image x has an equal prior
P ðxÞ, we only need to estimate the likelihood P ðqjxÞ. The
P ðqjxÞ denotes the possibility of image x to be relevant to q,
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therefore we can estimate it by leveraging the image search
result l. We define P ðqjxÞ as 1 if image x appears in the top-
T returned images for query q, else 0 if image x does not
appear in the top-T returned images for query q. In other
words, the query language model is estimated over the top-
T ranked images which are assumed to be pseudo-relevant
to the query q according to the widely used pseudo rele-
vance feedback assumption [12], [44].

3.3 Training Sample Augmentation

Up to now, we have shown how to select query-dependent
training queries. The next step is to construct preference pairs
from the training queries. However, for each query, there are
usually only a few ranking lists in LðqÞ, which may cause the
small (insufficient) sample problem. For example, in our
Example 1 in Section 1, there are only two ranking lists (one
from Bing and the other from Google) for each query. To
solve this problem,we can construct additional ranking lists.

Unlike other problems, we have the advantage that we
can manually create ranking list lmanual for each query by
permutating the N images in query q according to certain

rules. Then, lmanual is added into the ranking list set LðqÞ:
LðqÞ  LðqÞ [ flmanualg: (7)

In this paper we create three manual ranking lists, which are
diverse at the same time, for each query, including:

1) Perfect ranking list: order all relevant images at the
top and all irrelevant images at the bottom;

2) Worst ranking list: order all irrelevant images at the
top and all relevant images at the bottom;

3) Random ranking list: permutate the images randomly.
Our experiments show that this training set enlargement

works well for solving the small training sample problem.

4 PREFERENCE LEARNING FEATURE
CONSTRUCTION

A crucial factor in fðlÞ ¼ wTcðlÞ is the vector cðlÞ. It is not
trivial to design a feature vector to capture visual character-
istics of an arbitrary ranking list l. By analyzing the visual
distribution of images in the collection, we propose a set of
lightweight features.

4.1 Two Basic Assumptions

Given two ranking lists returned for query q over image col-
lection fx1; . . . ; xNg, the key is to investigate the visual dif-
ference between relevant and irrelevant images. The
relative feature vector cðlÞ discussed in this paper is
designed based on the following two basic assumptions:

� Density assumption: Relevant images have higher
density than irrelevant images;

� Visual similarity assumption: Relevant-relevant image
pairs share higher visual similarity than relevant-
irrelevant and irrelevant-irrelevant image pairs.

4.1.1 Density Assumption

Our density assumption is that relevant images have higher
density than irrelevant images. To verify whether this
assumption is true or not, we calculate the density of each

of the N images in query q and then analyze their statistic
characteristics. The density pxi for image xi is calculated via

Kernel Density Estimation (KDE) [45],

pxi ¼
1

jN ðxiÞj
X

xj2NðxiÞ
kðxi � xjÞ; (8)

whereNðxiÞ is the set of neighbors of image xi among theN
images and kðxÞ is a kernel function that satisfies both
kðxÞ > 0 and

R
kðxÞdðxÞ ¼ 1. The Gaussian kernel is

adopted in this paper and s is empirically set as the average
of pair-wise distances of all images.

Without ambiguity, we use xi to denote both the image
and its visual feature vector in this paper. Various visual
features can be used in (8). In this paper we adopt the popu-
lar visual bag-of-word image representation. More details
will be introduced in Section 5.

To show the density difference between relevant and
irrelevant images, we calculate the average density of all rel-
evant images AvgDenseþ and the average density of all
irrelevant images AvgDense� in each query. They are calcu-
lated as,

AvgDenseþ ¼ 1

jXþj
X

xi2Xþ
pxi ; (9)

AvgDense� ¼ 1

jX�j
X

xi2X�
pxi ; (10)

where Xþ is the set of all relevant images and X� is the set
of all irrelevant images. Ratiodense is defined as, Ratiodense ¼
AvgDenseþ=AvgDense�.

We compute Ratiodense for all 353 queries in Web353 and
plot them in Fig. 2 by sorting them in descending order.
From Fig. 2, we see that, among 353 queries, there are
329 queries whose average density of relevant images is
larger than the average density of irrelevant images
(Ratiodense > 1). To verify whether AvgDenseþ is signifi-
cantly larger than AvgDense�, we further perform a statisti-
cal significance test. We used the T-test with a 5 percent
level of significance. The T-test result shows that in 286
queries the average density of relevant images is signifi-
cantly larger than the average density of irrelevant images.
This phenomenon demonstrates that the density assump-
tion holds for most queries.

4.1.2 Visual Similarity Assumption

Our visual similarity assumption is that relevant-relevant
image pairs share higher visual similarity than relevant-

Fig. 2. Sorted Ratiodense values in 353 queries. There are 329 queries
whose average density of relevant images (AvgDenseþ) is larger than
the average density of irrelevant images (AvgDense�), i.e.,
Ratiodense > 1. Additionally, the AvgDenseþ is significantly larger than
AvgDense� in 286 queries (T-test, significance level 5 percent).
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irrelevant and irrelevant-irrelevant image pairs. For query q,
we calculate the visual similarity simðxi; xjÞ for any image
pair ðxi; xjÞ. There are various ways to calculate simðxi; xjÞ.
We use the popular bag-of-visual words representation
with intersection kernel [46].

To verify the visual similarity assumption we calculate
the average similarity of relevant-relevant, relevant-irrele-
vant, and irrelevant-irrelevant image pairs for each query in
the Web353 dataset. They are denoted as AvgSimþþ,
AvgSimþ�, and AvgSim�� respectively. We plot the sorted

Ratiosim1 ¼ AvgSimþþ
AvgSimþ� and Ratiosim2 ¼ AvgSimþþ

AvgSim�� in Fig. 3. It

shows that, among 353 queries, there are more than 340
queries whose average similarity of relevant-relevant pairs
is larger than the average similarity of relevant-irrelevant
and irrelevant-irrelevant pairs. The statistical significance
test (T-test with a 5 percent level of significance) reveals
that AvgSimþþ is significantly larger than AvgSimþ� in
347 queries, and AvgSimþþ is significantly larger than
AvgSim�� in 339 queries. This proves the validity of our
visual similarity assumption.

Due to the well-known semantic gap problem, some
queries (especially the queries with large intra-class appear-
ance variance) are hard to represent with descriptive visual
features. That is the reason why our two assumptions fail
for some queries, as shown in Figs. 2 and 3. By further
investigating the two assumptions on each query, we find
that the assumptions are valid for the queries with small
appearance variance, such as “pantheon rome”, “flag Italy”,
“mona lisa”, “log NBA”, etc. They are likely to fail for the
queries with large appearance variance, such as “flower”,
“dog”, etc. Although the assumptions fail for some queries,
they are valid for a majority of queries (Figs. 2 and 3).
Therefore, it is reasonable to apply them in our method.

Our experimental results reported in Sections 5, 6, 7 also
validate this.

4.2 Preference Learning Feature Extraction

Inspired by the above two assumptions, we propose a set of
related features by mining the distribution of density and
visual similarity in l. We demonstrate them by using a toy
example for illustration, as shown in Fig. 4. Suppose there
are six images returned for query q, three relevant (denoted
by square) and three irrelevant (denoted by circle). Given the
two ranking lists l1 and l2, obviously the performance of l1 is
better than l2, i.e., yðl1Þ > yðl2Þ. According to the two
assumptions, for the better ranking list l1, its top ranked
images should have high (H) density and share high visual
similarity while bottom ranked images should have low (L)
density and low visual similarity. This density and similarity
distribution difference between the two ranking lists can be
utilized for extracting preference learning related features.

4.2.1 Similarity Distribution Feature

For query q, given a ranking result l, a visual similarity

matrix M 2 RN�N can be obtained by calculating pair-wise
image similarity. The ði; jÞ element mij in M denotes the
visual similarity between the ith ranked image and jth
ranked image. We split the N images into k groups along
their ranks equally. As a consequence, the N �N similarity
matrix M is split into k� k grids, as shown in Fig. 5. Then,

Fig. 3. Sorted Ratiosim1 (a) and Ratiosim2 (b) on 353 queries.

Fig. 4. Illustration of density and similarity distribution difference between
two ranking lists. For the better ranking list l1, its top ranked images have
high (H) density and share high visual similarity while bottom ranked
images have low (L) density and visual similarity.

Fig. 5. The N images are split into k parts along their ranks equally.
Therefore, the N �N similarity matrix M is split into k� k blocks. We
calculate the mean and variance of the k diagonal blocks to derive the
similarity distribution feature vector FSD.
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we analyze the sub similarity matrix in diagonal blocks.
Specifically, we calculate the mean and variance of similari-
ties in each block to derive the similarity distribution feature
vector FSD:

FSDðiÞ ¼ ½meanðMði;iÞÞ; varðMði;iÞÞ�; i ¼ 1; . . . ; k; (11)

where Mði;iÞ is the sub similarity matrix in block Bii. Then,
a 2k-dimensional similarity distribution feature vector
FSD is derived. The intuition behind this feature is that,
for a good ranking result list, more relevant images have
higher ranks. In other words, images belonging to the
top part should share higher similarity than those in
other parts.

4.2.2 Density Distribution Feature

Similar to the visual similarity distribution feature, we also
propose a density distribution feature based on the density
assumption. For the N images fx1; . . . ; xNg, we can derive a

density vector p ¼ ½p1; . . . ; pN �T, where pi is the density of
the ith ranked image in l as defined in (8). We also split the
N images into k groups and calculate the mean and variance
of the density of the images in each part,

FDDðiÞ ¼ ½meanðpðiÞÞ; varðpðiÞÞ�; i ¼ 1; . . . ; k; (12)

where pðiÞ is the sub density vector for images in part i.
By concatenating FDDðiÞ, i ¼ 1; . . . ; k, we can get a 2k-
dimensional density distribution feature vector FDD.

4.2.3 Feature from Top-T Ranked Images

Both FSD and FDD roughly capture the overall density and
visual similarity distribution of all N images in l (mean and
variance). The following features are designed to exploit
them in fine granularity as a complement. Especially in the
case where users only focus on the performance of images
ranked in the first several pages. Therefore, we propose a
histogram of density and visual similarity to elaborately
analyze the top-T ranked images in l.

Specifically, the density value is in range [0, 1] and we
equally divide it into C-bins. Then, the densities of top-T
ranked images {p1, p2, . . ., pT } can be quantified into a C-bin
histogram by mapping them into the corresponding bins.
We denote this density histogram feature as FHD,

FHDðcÞ ¼ 1

T
jfiji ¼ 1; . . . ; T; pi 2 cth bingj; (13)

where c ¼ 1; . . . ; C.
Similarly, we can get a C-bin visual similarity histogram

FHS by mapping the T � T similarity matrix of the top-T
ranked images into C-bins,

FHSðcÞ ¼ 1

T 2
jfði; jÞji; j ¼ 1; . . . ; T;mij 2 cth bingj; (14)

where c ¼ 1; . . . ; C.
Given FSD, FDD, FHD, and FHS , the final preference learn-

ing feature vector cðlÞ can be derived by concatenating
these four individual features.

5 EXPERIMENT 1: RERANKING ABILITY

ASSESSMENT

We investigate the effectiveness of the proposed prefer-
ence learning model by applying it to three applications.
The first is the reranking ability assessment described in
Section 5, the second is the optimal search engine selec-
tion in Section 6, and the third is the synonymous query
ranking is Section 7.

In this section, we investigate the effectiveness of the pro-
posed preference learning model by applying it to reranking
ability assessment. In reranking, each query q has two rank-
ing lists: lText generated by text-based search engine and
lrerank generated by the reranking process. The reranking
abilityt�q is defined as the performance improvement of

reranking over text-based search, t�q ¼ yðlrerankÞ � yðlTextÞ.
The reranking ability measures to what degree reranking
can improve text-based search results. For a query, if its
reranking ability is positive (suitable to be reranked), the
reranking result list will be presented to users; otherwise
the text-based search result list will be presented. In other
words, the search engine can achieve guaranteed perfor-
mance enhancement by only reranking queries which are
suitable for reranking while leaving the remaining unsuit-
able ones unchanged. With this motivation, we apply PLM
to assess reranking ability. Specifically, with the model fð�Þ,
PLM can predict a value for lText and lrerank respectively.
The prediction difference fðlrerankÞ � fðlTextÞ is used to
approximate the ground truth reranking ability t�q .

5.1 Experimental Setting

Dataset: In order to demonstrate the capacity of PLM for
reranking ability assessment, we conduct experiments on a
large public web image search dataset “Web353”, collected
by Krapac et al. [13]. This dataset consists of 71,478 images
returned by the French search engine Exalead1 for 353
search queries, which were sampled from the most frequent
terms searched by Exalead users. These 353 queries are very
diverse and cover a broad range of topics, including land-
mark, design (painting, map, logo, flag), people (movie,
sports, singer star), object (vehicle, instrument, building,
sports tool), and others (animal, plant, product, place, event,
abstract word). Queries are somewhat evenly distributed
across these topics. For each query, there are about 200
images returned by Exalead. The ground-truth relevance
label for each image is given a binary value: “relevant” or
“irrelevant”. In this dataset, there are 43.86 percent images
labeled as relevant. For each query, we conduct Bayesian
Reranking (BR) [10] to generate its reranking result lrerank.

Ranking list performance yðlÞ. For query q, given a ranking
result list l, its ground truth performance yðlÞ is measured
via non-interpolated average precision [38], which is widely
used in information retrieval. AP is the mean of the
precision values obtained when each relevant image occurs.
The AP of top-T ranked images is defined as

AP@T ¼ 1

ZT

XT

i¼1
½precisonðiÞ � relðiÞ�; (15)

1. http://www.exalead.com/search/image
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where precisonðiÞ is the precision of top-i ranked images
and relðiÞ is a binary function denoting the relevance of the
ranked image with “1” for relevant and “0” for irrelevant.
ZT is a normalization constant which is chosen to guarantee
AP@T ¼ 1 for a perfect ranking result list.

Model training. We use the leave-one-out method for PLM
training. We train the query-dependent PLM for each query
by selecting query-dependent training query set from the
leftover 352 queries, as introduced in Section 3.2. We repeat
the process 353 times to ensure that each query has been
used as test query at least once. The K, cardinality of query-
dependent training query set, is set as 250 empirically. We
will discuss its effect later in Section 5.3.

Visual image representation. The density and visual simi-
larity features described in Section 4 are calculated based on
visual representation of images. In this paper we use a bag-
of-visual word histogram to visually represent an image.
Scale-invariant feature transform (SIFT) [2] local descriptors
are extracted from each image on a dense grid. Then, a code-
book is generated by clustering all local descriptors into
1,000 groups [46]. By quantizing local descriptors into visual
words, each image is represented as a 1,000-dimensional his-
togram. Spatial pyramid matching [1] is used to encode spa-
tial information. Calculating the similarity between two
histograms is done using an intersection kernel.

Evaluation. For each query q, there are two ranking lists:
lText and lrerank. The query’s ground truth reranking ability
is t�q ¼ yðlrerankÞ � yðlTextÞ, and the reranking ability esti-

mated by the learned PLM is tq ¼ fðlrerankÞ � fðlTextÞ. We
evaluate PLM from the following two aspects.

1. Prediction accuracy (AC):

AC ¼ #Correctly predicted queries

#Total queries
: (16)

Correctly predicted queries are those which satisfy t�qtq > 0.
AC examines whether PLM can correctly predict the binary
relationship (improved or not) between the result lists of
reranking and text-based search. In addition to this overall
accuracy, we also examine the prediction accuracy Pþ, P�
of positive and negative queries. A positive (negative) query
is one in which reranking performs better (worse) than the
text-based search, i.e., t�q > 0 (t�q < 0). Pþ and P� are

defined as:

Pþ¼#Correctly predicted positive queriesðt�q > 0 and tq > 0Þ
#Total positive queries

;

P�¼#Correctly predicted negative queriesðt�q < 0 and tq < 0Þ
#Total negative queries

:

We examine Pþ and P� because we want to investigate the
model’s capacity for negative query detection as well as the
percentage of sacrificed positive queries.

2. Correlation coefficient: Accuracy only measures the
binary prediction of reranking ability, i.e., improved or not
after reranking. To further verify the effectiveness of PLM
in terms of reranking ability degree prediction, we check
the consistency between the ground truth reranking ability
vector t� ¼ ½t�

qð1Þ ; . . . ; t
�
qð353Þ �

T and the one predicted by PLM

t ¼ ½tqð1Þ ; . . . ; tqð353Þ �T. As widely used in query difficulty pre-

diction [22], [23], we calculate the correlation coefficient
between t� and t. Two of the mostly used correlation meas-
urements are applied, including the non-parametric rank
correlation Kendall’s t [47] adopted in [20], [23], [24], [25],
[26], [29], [30] and Spearman’s r [48] adopted in [19], [21],
[22], [25], [34]. The correlation coefficient falls within the
range [�1, 1], where �1 means perfect negative correlation
and 1 means perfect positive correlation, and 0 means inde-
pendence between t� and t.

5.2 Reranking Ability Assessment

We evaluate PLM at five truncation levels, i.e.,
yðlÞ ¼ AP@T; T ¼ f20; 40; 60; 80; 100g. We implement the
document query difficulty method proposed in [22] as a
baseline, since this method conducts query difficulty predic-
tion through supervised model training. Based on [22], we
extract textual features for each image from its associated
textual information (URL, surrounding text, etc.) and train a
regression model. The reranking ability is denoted as the
query difficulty difference between the two ranking lists
(lText and lrerank). We note the method in [22] as QD. We also
compare our method with the recently proposed coherence
indicator [37]. We note this method as CI. For the parame-
ters in the comparison methods, we follow the best settings
reported in [22] and [37].

Table 4 shows the correlation coefficients and accuracy of
our approach and the baselines QD and CI. It reveals that our
method outperforms QD and CI in both correlation coeffi-
cients and accuracy. Our method achieves strong correlation
and achieves about 80 percent prediction accuracy. By further
investigating P+ and P�, we conclude that PLM removes
about half of the negative queries while keepingmost positive
queries. For example, in T ¼ 80, PLM detects 50.68 percent of
the negative queries, preventing performance decrease, while
sacrificing performance gain on only 8.73 percent of the posi-
tive queries. Although CI achieves a little better P+ when T¼
20 and T¼ 40 than PLM, its P� (< 20 percent) is much lower
than PLM. It means that CI can hardly identify queries which
are not suitable for reranking.

TABLE 4
Correlation Coefficients and Accuracy in

Reranking Ability Assessment

Kendall’s t Spearman’s r AC(%) P+(%) P�(%)

T ¼ 20 QD 0.0543 0.0787 57.51 67.97 33.33
CI 0.3617 0.5165 73.65 95.70 17.24

PLM 0.3643 0.5276 75.92 91.41 39.08

T ¼ 40 QD 0.1485 0.2166 65.44 77.44 30.49
CI 0.4217 0.5964 75.64 94.74 18.29

PLM 0.4511 0.6236 79.32 91.73 43.90

T ¼ 60 QD 0.0826 0.1208 65.44 77.09 26.03
CI 0.4520 0.6261 77.62 91.36 27.40

PLM 0.4798 0.6476 81.59 92.00 47.95

T ¼ 80 QD 0.1244 0.1804 68.84 81.09 27.40
CI 0.4418 0.6146 73.65 87.27 27.40

PLM 0.4842 0.6569 81.59 91.27 50.68

T ¼ 100 QD 0.1400 0.207 70.82 82.44 28.99
CI 0.4396 0.6057 73.94 83.51 40.58

PLM 0.4814 0.6545 83.00 91.76 53.62
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5.3 Effects of K in Query-Dependent PLM

We test the performance of query-dependent PLM with dif-
ferent values of parameter K, the number of similar queries
selected for training the query-dependent model, to validate
its effectiveness as well as the effects of K. Notice that when
K ¼ 352, it becomes the universal PLM in which all training
queries are used. We present the results (in terms of AC at
T ¼ 100 for illustration) with respect to different values of
K, as given in Fig. 6.

It shows that when K varies from 50 to 352, the per-
formance first increases and then decreases. When K is
small (e.g., less than 100), the performance is unsatisfac-
tory due to the insufficiency of training queries. More
training queries will bring more information and thus a
better performance can be achieved. Therefore the per-
formance improves gradually as K increases and arrives
at the peak around K ¼ 250. However, when K keeps
increasing to 300 and 352, the performance decreases
substantially because noisy training queries have a nega-
tive effect on the model. This result demonstrates the
effectiveness of query-dependent PLM.

Our proposed method is highly efficient. When a testing
query is given, the main time cost is in the step of calculat-
ing the similarity matrix M which is about OðdN2Þ where d
is the dimension of image representation, and in the step of
searching the query-dependent training set which is about
OðdT þ dmþmlogKÞ where m is the number of queries in
the training set. We test the average time cost on Web353
dataset. It takes less than 0.1 second per query. The algo-
rithm is implemented using MATLAB and run on a PC
with 3.40 GHz Intel Core CPU and 4 GB memory in single
thread.

5.4 Reranking Filtering

With the predicted reranking ability, we can choose to
execute reranking only on those queries whose reranking

ability is positive. This operation can prevent large perfor-
mance decreases on some queries, possibly improving the
user experience. The reranking process selection for each
query can also lead to a better overall performance (mean
AP over all queries, MAP). We select a better one from lText
and lRerank for each query via QD (SelectQD), CI (SelectCI)

and PLM (SelectPLM.) Table 5 lists the MAP values for text-
based search (Text), reranking (BR), SelectQD, SelectCI, and
SelectPLM. Column SelectOpt shows the maximal MAP by

selecting the best search result list between Text and BR for
each query according to their ground truth performance,
which gives the upper bound of the MAP value we can
achieve. Table 5 shows that SelectPLM performs better than
both Text and BR, while SelectQD and SelectCI only achieves
a moderate performance between Text and BR. The reason
why the QD method in [22] does not work well here is that
textual features in image retrieval are not the essential
descriptions for the images, therefore more noise (e.g., mis-
matching between surrounding text and image content)
may be introduced.

As we discussed in Section 4.1, the assumptions are
not always valid for all queries. For those queries which
do not satisfy the assumptions, the extracted preference
learning features may be noisy. Consequently the prefer-
ence prediction may be unreliable. To investigate the
implication of the failures of the assumptions on the pre-
diction results, we examined the performance of the pro-
posed PLM on the 67 queries which do not satisfy either
the density assumption or the visual similarity assump-
tion. The experimental results show that our approach
still achieves (51.82	2.0) percent prediction accuracy
(AC over T ¼ 20; 40; 60; 80; 100) in reranking ability
assessment, which is close to random prediction. And
the SelectPLM is comparable to Text and BR, as shown in
Table 6. It reveals that our method does not worsen the
search engine’s performance even on the queries which
do not satisfy the assumptions.

Fig. 6. AC (T ¼ 100) with different K.

TABLE 5
MAP (�100) Comparison in Reranking Ability Assessment

Text BR SelectRandom SelectQD SelectCI SelectPLM SelectOpt

MAP@20 50.28 63.64 56.96 59.65 64.22 64.56 66.80
MAP@40 45.24 57.37 51.31 55.29 57.85 58.03 59.40
MAP@60 43.06 54.35 48.71 51.89 54.70 54.96 55.96
MAP@80 42.60 52.90 47.75 51.24 52.89 53.50 54.32
MAP@100 43.08 52.99 48.04 51.65 52.81 53.54 54.24

MAP is the mean of AP over all queries.

TABLE 6
MAP (�100) Comparison in Reranking Ability Assessment
for the Queries Which Do Not Satisfy the Assumptions

Text BR SelectRandom SelectPLM SelectOpt

MAP@20 41.00 41.29 41.15 41.78 47.51
MAP@40 36.57 36.91 36.74 37.24 41.09
MAP@60 34.58 35.38 34.98 35.25 38.37
MAP@80 35.32 36.15 35.74 36.27 38.92
MAP@100 36.38 37.90 37.14 37.76 40.19
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To further investigate the effectiveness of PLM for differ-
ent categories of queries, the 353 queries are grouped into
five categories: landmark (53), design (60), people (98),
object (54) and others (88). We conducted experiments on
each of the five categories. The experimental results show
that our method works well on all query categories. The
prediction accuracy (ACs) are 86.79, 95.00, 87.76, 61.11,
78.41 percent respectively. Even in the category “object”, of
which queries usually have images with a large visual
appearance variance, moderate AC (61.11 percent) is
obtained and the MAP value of SelectPLM is better than both
Text and BR, as shown in Table 7. Better performance is
achieved in “landmark” and “design” since the images of
those categories are more visually consistent. For “people”,
high AC is obtained, but the SelectPLM is very close to BR.
The reason is that BR already improves most of queries in
this category a lot, hence the improvement space of PLM
over BR is limited.

5.5 Best Reranking List Selection

PLM can also be applied to select the optimal reranking
results. With two reranking features (SIFT and CF) and
two reranking algorithms (BR and PRF), four reranking
result lists are generated by their combination, i.e.,
BRSIFT, PRFSIFT, BRCF and PRFCF. We apply PLM to
select the best result list for each individual query. For
each query, four reranking lists as well as the Text result
list are ranked according to the value predicted by PLM.
Table 8 gives the MAP value comparison between their
individual performances, as well as the performance
after selection. We note an increase in performance after
PLM selection, producing better results than all five
basic methods and random selection. We also analyzed
the number of queries for which PLM selects the ith best
ranking list (i ¼ 1; . . . ; 5; i ¼ 1 means the best and i ¼ 5
means the worst), as shown in Fig. 7. It shows that PLM
selects the Best/second best ranking list for about 40 per-
cent/20 percent of the queries. It obviously outperforms
random selection, which would select each of the five
ranking lists for about 20 percent of the queries.

6 EXPERIMENT 2: SEARCH ENGINE SELECTION

In this section we investigate the effectiveness of the pro-
posed method by applying it to optimal image search
engine selection and search result merging. Specifically,
each query q has two ranking lists generated by two search
engines: Bing and Google. Our objective is to determine
which search engine returns better performance for any
query q.

6.1 Experimental Setting

Dataset. A dataset was collected from two popular image
search engines, Bing (Live) and Google. We selected 29
queries2 from the top-1,000 queries of Live Image Search
and popular tags on Flickr. The 29 queries satisfy all the fol-
lowing three criteria: 1) Popularity: they are either top
queries of Live Image Search or popular tags of Flickr; 2)
Broad topic coverage: the 29 queries cover wide topics, e.g.,
animals, plants, scene, objects, etc.; 3) Including both simple
and compound queries: the 29 queries contain both simple
queries which normally consist of one term (e.g., “Cat”,
“Flower”, etc.) and compound queries which are refined
terms based on some certain attribute, e.g., color (“White
Cat”), time (“White House Night”), emotion (“Funny
Dog”), etc. We submitted each query to Bing and Google
respectively, and collected the top 1,000 images returned,
resulting in 50,566 total images. For each query, the
returned images are labeled as either “relevant” or
“irrelevant”. In this dataset, there are 42.23 percent images
labeled as relevant.

Experimental setting is the same as that in Section 5.
We used the bag-of-visual words histogram for image
representation and the leave-one-out method for model
training. Here we apply the universal PLM instead of
query-dependent PLM since the number of queries is
limited.

Evaluation. For each query q, there are two ranking lists:
lBing and lGoogle. Each query’s ground truth performance
difference is denoted as d�q ¼ yðlBingÞ � yðlGoogleÞ, and the

performance difference estimated by PLM is dq ¼ f

ðlBingÞ � fðlGoogleÞ. We also evaluate PLM’s preference pre-
diction ability from the following two aspects:

1. Prediction Accuracy defined in (16). In this application,
the correctly predicted queries are those which satisfy
d�qdq > 0, i.e., the preference relationship between the two

ranking lists is correctly predicted.
2. Correlation coefficient: Kendall’s t, and Spearman’s r

correlation coefficients between the ground truth perfor-

mance difference vector D� ¼ ½d�
qð1Þ ; . . . ; d

�
qð29Þ �

T and the one

predicted by our PLM D ¼ ½dqð1Þ ; . . . ; dqð29Þ �T.

6.2 Search Engine Selection

We also evaluate five different Ts as in Section 5. Table 9
shows the correlation coefficients and accuracy. It shows
that moderate correlation coefficients are achieved and the
AC is more than 70 percent when T ¼ 80 and 100. It demon-
strates that PLM can choose the better search engine
between Bing and Google for the majority of queries. There-
fore, better performance will be achieved after this suitable
search engine selection. The MAP values of Bing (TextBing),
Google (TextGoogle) and the one generated after our PLM
Selection (SelectPLM) are given in Table 10. Column SelectOpt

is the maximal MAP value arrived at by selecting the opti-
mal search engine according to their ground truth. Table 10

TABLE 7
MAP (�100) Comparison in Reranking Ability Assessment

for Each of the Five Query Categories (T ¼ 60)

Text BR SelectRandom SelectPLM SelectOpt

landmark 50.92 62.44 56.68 63.75 64.88
design 41.94 57.83 49.89 58.59 59.00
people 47.08 61.61 54.35 61.59 62.08
object 33.66 35.33 34.50 36.64 39.00
others 40.38 50.70 45.54 51.31 52.10

2. Animal, Beach, Beijing Olympic 2008, Building, Car, Cat, Clouds,
Earth, Flower, Fox, Funny Dog, George W. Bush, Grape, Hearts, Hello
Kitty, Hiking, Mercedes Logo, Panda, Sky, Statue of Liberty, Sun, Trees,
Wedding, White Cat, White House Night, White House, Winter, Yellow
Rose, Zebra.
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shows that SelectPLM achieves consistent performance
improvements over both TextBing and TextGoogle for all Ts.
From Tables 9 and 10, we conclude that the proposed PLM
method can be successfully applied to optimal search
engine selection.

6.3 Search Results Merging

In search engine selection, for each query, we choose a
better one between lBing and lGoogle. In addition to this
binary selection, we can also merge the two result lists to
get a new one. For query q, when we have no idea of the
performance of the two search results, they may contrib-
ute equally to the final merged result list. If we have the
prior knowledge of which one is better than the other,
then higher merging weight can be assigned to this better
one. Our PLM can serve this role by using the predicted
dq to set appropriate merging weights. To complete this
goal, the D is first normalized into [�1, 1]. We denote the

normalized performance difference as ~dq. Then, for query
q, the merging weights for lBing and lGoogle are defined as

wBing ¼ 1
2 ð1þ ~dqÞ and wGoogle ¼ 1

2 ð1� ~dqÞ respectively

(wBing � 0, wGoogle � 0, wBing þ wGoogle ¼ 1). To form the
merged result list, we assign a merging score to each
image in lBing and lGoogle. The merging score for the i-th
ranked images in lBing is i� ð1� wBingÞ. The merging
score for the i-th ranked image in lGoogle is i� ð1� wGoogleÞ.
The final merged ranking list is derived by sorting all
images in lBing and lGoogle in ascending order of their
merging scores. The performance of this weighted merg-
ing result is given in Table 10, comparing with the equal
merging in which wBing ¼ wGoogle ¼ 0:5. The search engine
selection discussed above is actually a hard merge of the
two search results with weight either 1 or 0. Table 10
clearly demonstrates that merging by leveraging our pref-
erence prediction outperforms equal merging.

7 EXPERIMENT 3: SYNONYMOUS QUERY

SUGGESTION

In image search, it is not trivial for users to formulate a
proper query which can express their search intents clearly
and precisely. Sometimes, the users can imagine what they
desire, but they have difficulty expressing their desire in
precise wording [49], [50]. This is the so called intention gap
problem, i.e., the gap between users’ search intents and the
queries. To address this problem, query suggestion techni-
ques have been proposed [51], [52] which provide a set of
alternative search terms to users. Although suggesting alter-
native search terms to the user could help the user improve
the quality of their results, different queries generate differ-
ent search result lists. To find which query gets the best
search performance, users need to examine the search
results of all suggested queries. It would be good if the sug-
gested queries could be ranked according to their search
quality. Our method proposed in this paper can serve this
role by automatically comparing the quality of search
results generated by those alternative suggestions. We start
with the synonymous query suggestion problem. For each
query, there are two synonymous query terms. We compare
their search quality and to pick out the better one.

7.1 Experimental Setting

Dataset. We collected a synonymous query image dataset for
synonymous query selection from Web. 97 synonymous
query groups are collected from WordNet [53]. In each
group, there are two synonymous query terms, for example,
{“hen”, “chicken”}, {“ship”, “boat”}, {“mouse”, “rat”},
{“stone”, “rock”}, {“parcel”, “package”}, {“rabbit”, “bunny”},
{“bicycle”, “bike”}. We submitted each of the query terms
into Google, and collected the top 200 returned images,
resulting in a dataset consisting of 38,800 images in total. The
relevance of each image to its corresponding query is evalu-
ated manually through the developed labeling tool. The
interface of the labeling tool is shown in Fig. 8. Each image is
given a a label of “relevant” or “irrelevant”. There are 67.41
percent images labeled as relevant. The bag-of-visual words
histogram is also adopted for image representation and the
leave-one-out method is applied formodel training.

TABLE 8
MAP (�100) Comparison in Best Reranking List Selection from {Text, BRSIFT, BRCF, PRFSIFT and PRFCF}

Text BRSIFT BRCF PRFSIFT PRFCF SelectRandom SelectPLM SelectOpt

MAP@20 50.28 63.64 60.21 60.65 54.00 57.76 64.76 72.26
MAP@40 45.24 57.37 53.99 54.75 49.67 52.20 58.71 63.68
MAP@60 43.06 54.35 50.65 51.97 47.52 49.51 55.47 59.45
MAP@80 42.60 52.90 49.20 50.68 50.68 49.21 53.96 57.57
MAP@100 43.08 52.99 49.08 50.57 47.58 48.66 54.09 57.29

Fig. 7. Best reranking list selection. Percentages of queries for which
PLM selects the Best/second/third/fourth/Worst ranking list. For random
selection, it should be 20 percent for each of the five ranking lists. This
figure shows that our model can select the Best ranking list for about 40
percent of the queries, and the second best list for about 20 percent of
the queries.

TABLE 9
Correlation Coefficients and Accuracy in Search

Engine Selection from {Bing, Google}

T ¼ 20 T ¼ 40 T ¼ 60 T ¼ 80 T ¼ 100

Kendall’s t 0.1724 0.1970 0.1232 0.1626 0.2315
Spearman’s r 0.2483 0.3281 0.2320 0.2360 0.3305

AC(%) 62.07 68.97 65.52 79.31 75.86
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Evaluation. For each of the 97 synonymous query groups,
we denote the two terms in group G as qs1 and qs2 and their
corresponding ranking lists as ls1 and ls2 respectively. The
ground truth performance difference between ls1 and ls2 in
G is d�G. The performance difference estimated by PLM is dG.
The evaluation is similar to that in Section 6:

1. Prediction accuracy: percentage of groups in which the
preference relationship between the two synonymous query
terms is correctly predicted, i.e., d�GdG > 0.

2. Correlation coefficient: Kendall’s t and Spearman’s r cor-
relation coefficients between the ground truth performance

difference vector D� ¼ ½d�
Gð1Þ ; . . . ; d

�
Gð97Þ �

T and the one pre-

dicted by our PLM D ¼ ½dGð1Þ ; . . . ; dGð97Þ �T.

7.2 Synonymous Query Term Suggestion

Fig. 9 gives the absolute values of ground truth AP@40 dif-
ference between the two synonymous query terms in each
of the 97 groups. We can see that the quality of the search
result varies a lot within synonymous query terms. It is
highly desired to automatically identify which one is better.

PLM compares the quality of the search result lists of two
synonymous query terms in each group, and the experi-
mental results in terms of correlation coefficients and accu-
racy are given in Table 11. It shows that PLM is able to
identify the better one from the two synonymous query
terms in most cases with an accuracy above 70 percent.
When T ¼ 40, the accuracy reaches 77.89 percent.

Since we know the performance preference within the
two synonymous query terms in each group, we can sug-
gest the better one to users. A better performance can be
achieved with this optimal query term suggestion. There-
fore, our PLM is suitable for the task of synonymous search
term selection. Table 12 demonstrates the improvement our
PLM selection can have, showing the MAP of the baseline
lists as well as the MAPs resulting from a random selection
of search term from each group, our PLM selection and the
optimal selection SuggestOpt, in which the query term is sug-
gested optimally according to ground truth performance. It
can be clearly observed that the performance is noticeably
improved after PLM suggestion. From these results, we can
conclude that our proposed framework can train a PLM
which can be successfully applied to the task of image
search result judgment for synonymous queries.

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed a method to automatically com-
pare the quality of a set of ranking result lists for a given
query by mining their visual information. The method is
formulated within the RankSVM framework and a set of
lightweight features are designed to reflect the visual distri-
bution difference between ranking lists with varying levels

TABLE 10
MAP (�100) Comparison in Search Engine Selection and Search Results Merging from {Bing, Google}

TextBing TextGoogle SelectRandom SelectPLM SelectOpt MergeEqual MergeWeight

MAP@20 57.91 64.26 61.09 65.80 71.51 65.36 67.21
MAP@40 52.24 52.36 52.30 56.12 60.71 59.57 59.80
MAP@60 49.18 44.35 46.77 50.78 54.63 54.78 55.85
MAP@80 46.52 39.41 42.97 47.77 50.64 51.31 52.76
MAP@100 44.52 36.20 40.36 45.16 48.18 48.61 49.83

Fig. 8. The interface of the image labeling tool. Each image is evaluated
manually and is assigned a label of “relevant” or “not relevant”.

Fig. 9. Absolute value of AP@40 difference between the two synony-
mous query terms in each of the 97 groups (sorted in desending order
for better view).

TABLE 11
Correlation Coefficients and Accuracy in

Synonymous Query Suggestion

T ¼ 20 T ¼ 40 T ¼ 60 T ¼ 80 T ¼ 100

Kendall’s t 0.2749 0.3001 0.3063 0.3153 0.3222
Spearman’s r 0.3902 0.429 0.4215 0.4376 0.4595

AC(%) 74.42 77.89 72.16 72.16 70.10

TABLE 12
MAP (�100) Comparison in Synonymous Query Suggestion

SuggestRandom SuggestPLM SuggestOpt

MAP@20 74.71 85.43 90.51
MAP@40 71.16 82.79 87.75
MAP@60 68.43 78.87 85.17
MAP@80 66.03 75.69 82.96
MAP@100 64.10 73.14 81.27
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of quality. The proposed method is successfully applied to
reranking ability estimation, automatic search engine selec-
tion and synonymous query suggestion. Extensive experi-
mental results have demonstrated the effectiveness of our
approach and its promising applications on reranking fea-
ture and model selection, merging of image search results,
as well as query suggestion.

Currently, our preference learning model is built based
on visual features of images only, and their textual informa-
tion is not considered. In the future, we plan to further
exploit this ranking list performance comparison problem
by investigating both visual and textual features, to achieve
better performance.
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